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Random walks with shrinking steps: First-passage characteristics
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We study the mean first-passage time of a one-dimensional random walker with step sizes decaying expo-

nentially in discrete time. That is step sizes go like A" with A=<1. We also present, for pedagogical purposes,
a continuum system with a diffusion constant decaying exponentially in continuous time. Qualitatively both
systems are alike in their global properties. However, the discrete case shows very rich mathematical structure,
depending on the value of the shrinking parameter, such as self-repetitive and fractal-like structure for the
first-passage characteristics. The results we present show that the most important quantitative behavior of the
discrete case is that the support of the distribution function evolves in time in a rather complicated way in
contrast to the time independent lattice structure of the ordinary random walker. We also show that there are
critical values of X defined by the equation NX+2\"~2=0 with {K,N} € A/ where the mean first-passage time

undergoes transitions.
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I. INTRODUCTION

The common model of random walk is an integral part of
almost all scientific disciplines in such a way that it would
not be an overstatement to call it a meta model. In this re-
spect it is important to look for extensions and possible gen-
eralizations of the model. In fact many of these extensions
are already present: the ordinary random walk is solvable in
many lattices with arbitrary nearest neighbor sites, the con-
tinuum limits are known for various geometries and gener-
alizations for space dependent diffusion constant also exist in
nature.

Another likely extension of a random walk could be the
case of a walker with step sizes shrinking with time. Al-
though there is considerable work [1-6] on this in math-
ematical literature, the idea has not been studied extensively
from a physics perspective: see [7-10]. However there is a
rather straightforward motivation for it to be important. The
idea is the dichotomy between a Brownian particle and an
active random walker. In the former case the particle is
merely pushed around by the surrounding molecules. That is,
it is under the influence of a random external force. In the
latter case however, there is a possibility for internal energy
dissipation and hence the step sizes (the ability to diffuse in
the medium) might decrease in time. It is a difficult exercise
to visualize how this might occur in atomic scales. It is more
likely that this motivation would make sense only in some
form of macroscopic mean field theory.

If we can be allowed to be a little humorous, the very
analogy of a drunk man for the ordinary random walk is in
essence closer to a walker with shrinking step sizes. This
example might at first seem rather nonscientific, but it brings
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to mind how biological systems, with rather short memory,
propagate in nature without energy intake, let it be a fish in a
bowl or a fly in a room. It is most likely that step size
changes in nature are not fierce under normal circumstances
so their effect is immaterial. However, under extreme cir-
cumstances such as lions hunting prey, the internal energy
dissipation could be important and then it is a matter of
determining how the step sizes change in time from biologi-
cal principles.

Nevertheless, the aim of this paper is not to make a full
case for the physical relevance of a random walker with
shrinking step sizes. We believe that random walk would
remain a meta model with this extension as well.

The motivation for this work is the very interesting first
passage characteristics of the ordinary random walk, such as
the dichotomy between certain passage from any point and
infinite mean first passage time from that point for a random
walker in one dimension. Various processes in nature pro-
ceed by first-passage processes. For example the hunt will be
over when the prey and predator meet for the first time, or a
neuron will fire when the electric potential first reaches a
threshold value, etc. For further information on the study of
first-passage time for various systems we refer the reader to
[11] (and references therein) for a review and introductory
book and to [12-16] for recent literature.

The outline of the paper is as follows. In Sec. II, for
purposes of motivation and developing a qualitative under-
standing of the problem, we consider the first-passage char-
acteristics of a diffusion equation with a diffusion constant
that decreases exponentially with time. In particular we em-
phasize the asymptotics of the mean first-passage time for
later comparison with the discrete case.

Section III introduces the discrete random walker with
shrinking step sizes with an emphasis on the most general
aspects of the model. In particular we emphasize the fact that
the support of the distribution evolves in time in a compli-
cated way rendering an analytical study almost impossible.
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The first passage characteristics of the discrete random
walker with exponentially decreasing step sizes are presented
in Secs. IV and V. In Sec. IV the model is studied numeri-
cally for various parameters and both local and global prop-
erties of the mean first-passage time are analyzed. In Sec. V
we present an in depth analysis of the global properties. In
these sections we also contrast the results to the continuum
model and substantiate that the two models agree on their
general behaviors if not in every detail.

The continuum model and the discrete walker we study
both have logarithmic divergences in the mean first-passage
time as we let the position to be first passed take large val-
ues. This in turn makes it possible to have a qualitative con-
nection of parameters: in the continuum model the diffusion
constant decays exponentially in time with decay parameter
7 and the correspondence takes the form 7~ —1/In N modulo
dimensions. When we consider first-passage times of points
closer to the origin we again recover the same correspon-
dence. In short the continuum model grasps almost all the
global properties of the mean first-passage times for the dis-
crete model.

However the local behavior of the discrete walker is
much richer. We have quantified one of its aspects as fol-
lows: we studied the mean first-passage time for general \ in
comparison to the exactly solvable case for A<1/2 where
the mean first-passage time from a point (#(x,)) has the form
of a ladder which increases in unit steps at the points
Xo(M)=(1-\M)/(1=\) with M e N, that is for A\<1/2 we
have (t(M))=M+ 1. We show that at these points, the behav-
ior of the mean first-passage time for general N\ after we
subtract the ladder structure of the exactly soluble case
[meaning we study (¢’ (M))={t(M))—M as a function of \]
has transitions at \’s defined by the equation NK+2\F-2
=0 with {K,N} e NV. As a corollary we also show that for
N <\, the reduced mean first-passage time (¢'(M)) does not
depend on M and is a function of A only. Here \;, is the
solution to the polynomial above for K=1 and P=2 we have
N12=0.732. This we believe is one of the most interesting
properties of the discrete walker while there are some others
we have discussed in Sec. IV.

II. A CONTINUUM EXAMPLE

For presentation purposes, before getting into the intrica-
cies of a discrete random walk, we expose the behavior of a
shrinking diffusion constant in continuum diffusion equation.
That is, we consider the following:

P _ P
2 pe
at ax?

. (1)

We would like to solve this in a semi-infinite line with the
initial condition that P(x,0)=48(x) and absorbing boundary
conditions at x=x, that is, P(x,,?)=0.

The differential equation in (1) can easily be solved with
the above conditions to give

1

2 2
[ o~ (OPHADT) _ =[x = 2xp) ]/4DT]’ )
N47DT

Px,T)=
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T=m1-e"). (3)

The first-passage probability to x, is just the flux to this
point. The flux can be read from the diffusion equation if one
writes it as dP/dt=—dF/dx. This will give

X0

2
X0
F(xg,1) = . 4
(x0.1) J4nDT> eXp[ALDT] (4)

From this the zeroth moment or the eventual first passing
probability can be calculated to give

Fo(xO) =1- el’f|: V/%-:| . (5)

Here, erf(u)=(2/ V) I gdte"2 is the error function. The result
above should be contrasted to the ordinary diffusion equation
where F((xy)=1. In the problem under consideration there is
a finite first-passage probability from x,, however this is rap-
idly vanishing with increasing x, as one would expect.

The survival probability, that is the probability to never
have been to x, at time ¢, is defined as

t
S(xo,t)El—f F(xo,t")dt’, (6)
0
which gives an exact result
S(xoh1) = erf 20 (7)
xg,1) = erf| ———|.
0 VADH1 = &)

This predicts a finite survival probability S(x,)
=erf(x,/\4D7) for infinite time, again in contrast to the or-
dinary random walk with the survival probability vanishing
as xO/\J’TDt as t— oo,

The mean first-passage time can also be calculated. How-
ever in this case the result is only available as a series

T - 1 )
— 2, —u¥"T(0.5-n,u?). 8
l—erf(u)z nu ( nu) ®

(t(xo)) =
With u=x,/\4D7and ['(a,z)=[ 7dte™'r"!, the incomplete y
function. To understand the behavior of this quantity we
study its asymptotic behavior. The analytic properties of the
error function and the incomplete 7y function are readily
available in textbooks. The results for the two regimes of
interest are the following:

for u—0
T Xg 77—2x(2)
(t(x)) = b am ot )
for u—oo
(t(xg)) — 725 1—724—?21+ (10)
n=1 1 X0 n=1

So as u— o we expect a logarithmic divergence with a linear
dependence on 7.
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We are now equipped with enough intuition to attack the
more difficult case of a discrete random walk with shrinking
steps.

III. RANDOM WALKS WITH SHRINKING STEPS

Consider a random walker which hops equally such as to
the left and right by some distance s, at a given time n. Then
the random variable for the position of the walker is simply

N
x(N) =D €,5,, (11)
n=1

with €,=+1 the random variable for hopping. The mean of
x(N), as expected, is zero: the random walker does not
propagate in the mean but rather in the standard deviation
which is given by

N
PNy =2 s (12)
n=1

From this relation it follows that if the sum converges to a
constant as N— o0 there can be no continuum limit [17]. To
clarify the reasoning let us remember how one takes the con-
tinuum limit. We first introduce a lattice spacing &x, which
would mean that the variance becomes

N
(P(N)) = 832D, 52
n=1

Now if there is a continuum limit we should be able to
take ox— 0 with N—o0 and still get a nonzero standard de-
viation. For example in the ordinary random walk we have
s,=1, which in turn means that (x>(N))=d&x’N. So letting
N— o can be done by N=t¢/6t and 6t— 0. The limit would
make sense if dx?/&t remains a constant upon taking the
limits. Actually this is how one defines the diffusion con-
stant. On the other hand if the sum in (12) converges to a
constant independent of N as N—, we get zero standard
deviation upon taking Sx—0. Such a behavior will be
present, for example, if s,=\" with A <1: the model which is
under consideration in this paper.

This pathology is present because the support of the prob-
ability distribution function for the random variable x(N)
evolves in time, in sharp contrast to the ordinary random
walk for which the walker always resides on a lattice site: a
time independent regular structure allowing a limit for zero
lattice spacing.

Disregarding this difficulty one might be tempted to as-
sume that the use of known machinery such as Fourier trans-
forms will be useful. However this does not generally help in
practice unless special cases occur, such as infinite time limit
or a particular shrinking parameter. The fact that the support
of the distribution evolves in time in a generally nonuniform
way will ultimately infest these approaches, especially if one
is interested in the temporal evolution in the finite time re-
gime.

For example in [7] the case s,=\" has been shown, using
Fourier transforms, to be exactly solvable for N=1/2. This
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case is exactly solvable since at each time step the support of
the distribution is

N=1 {-L1},

N=2 {-3/2,-1/2,1/2,3/2},

N=3 {-7/4,—-5/4,-3/4,—1/4,1/4,3/4,5/4,7/4},

The support evolves, but at each time step it is a regular,
equally-spaced lattice albeit with different lattice spacings
for different times. For slightly more general cases, namely
the infinite time limit for A=1/2", studied in [7], what hap-
pens is that the supports are actually unions of m evenly
distributed support sets which results in mathematical terms
to products (convolutions) of the distributions in momentum
(position) space. This is the reason why these cases are easily
manageable.

IV. GEOMETRIC SHRINKING: MEAN
FIRST-PASSAGE TIME

In this section we will investigate the mean first-passage
time of a random walker with s,=\". Since there are no
generally tractable analytic methods we will resort to nu-
merical methods in this section. Contrary to the ordinary
random walk, yielding infinite mean first-passage time and
hence rendering a direct Monte-Carlo analysis rather hard if
not impossible [18], the walker we are interested in ulti-
mately comes to a stop. So a numerical analysis is indeed
very feasible. There are however certain issues to be resolved
in the present case that do not exist in the ordinary random
walk. We start this section by listing the numerical and simu-
lational peculiarities we have encountered when studying the
system. We then work out the exact soluble case of
A=<1/2 as a first exercise. Afterwards we present a case
study for A=0.55 where we lay out the results for the mean
first-passage time along with digressions on its various as-
pects. We have also present simulations for A=v2 and X\
=0.9 in order to better convey the ideas and to have contrasts
to the case A=0.55 and A<1/2.

A. Numerical peculiarities

First passage from a point. The fact that the support of the
distribution evolves haunts us here again. In the ordinary
random walk a first-passage from a point is actually 7o oc-
cupy that point for the first time. In the case of a walker with
shrinking steps it is no longer possible to predict that a given
point is part of the support set at a given time. However the
idea of passing certainly makes sense: that is to be fo the
right of a point for the first time is a meaningful statement.
This unfortunately has the corollary that a particular path
may contribute to the first-passage distribution of more than
one point if these points are close. As we will see, due to its
local aspect, this effect will not alter the global properties of
the system.

Falling out of range. In the ordinary random walk the
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walker never falls out of range of a point. But, with the
walker we are interested in this will it be possible. Certain
walks will fall out of range of a point due to a bad choice of
direction at some point earlier in time. One could say earlier
mistakes are punished more severely. However in terms of
computer simulations this is more than welcome since it
eliminates a walk that would never reach a point. This is a
great help in reducing the simulation time.

Spatial resolution. A random walker with geometrically
shrinking step size will theoretically walk for an infinite
amount of time. However in practice one can assume that
after some time it will not move appreciably and the subse-
quent walk will have negligible effect. We have always cho-
sen such a cutoff time such that the subsequent step sizes
would be less then 107°.

With these in mind we have performed several simulation
as follows. We start the walker at the origin and make a
histogram of the time values for which the walker first passes
a point x,. This defines the first passage probability distribu-
tion F(xy,N). We then compute the normalized mean first-
passage time as follows:

_ F L(Xo)
(t(xo)) = Fole)” (13)
with
F,(x0) = 2 N"F(xo,N), (14)

N=0

defining the moments of F(x,,N).

The general details of the simulations were as follows.
For a given x,, we let the walker walk 10° times up to the
step number cutoff defined so that the spatial resolution is
below 107°. After this bunch is completed we have a single
distribution for F(x,,N). We repeat this procedure about 200
times to get a statistical histogram from which everything
can be computed. The procedure is repeated for different
values of x.

B. Exact result for A<1/2

This case has a very simplifying aspect: as time passes the
walker always falls out of range of any point it occupied in
the past. Another way of stating this fact is that the support
of the distribution is a Cantor Set which never crosses itself.
Therefore the mean first-passage time will be given as
follows:

(t(xo)) =1

for0<xy=1,
(Hxg)y=2 forl1<xp<1+N\,
(txo))=3 for 1+N<xyg<1+N+\?,

(15)

That is, the only walk that could pass from 0 <xy=1 for the
first time is a walk that takes the first step to the right. Con-
versely if the walker chooses to go to the left in the first step
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FIG. 1. The mean first-passage time from x, for A=7/10.

it falls out of range of 0 <x,=1. The argument also carries
to other intervals in (15). This result can be put to a more
compact form as follows:

In[1 - (1 —)\)xo]} (16)

(t(xp)) = int[ Y

As can be verified this function increases with unit steps as
X, reaches certain values given by
1-2\K

xo(K) = _x

(17)

These values represent what can be called extremity walks.
That is, walks with all the steps in one direction.

Thus the mean first-passage time has the form of a ladder
with step heights increasing by unity and the step widths
decreasing in such a way that they are scaled down with \ at
each step. In all the cases we have studied we have observed
the ladder pattern, there is an appreciable discrete jump in
the mean first-passage time as one crosses an extremity walk
point. The reason for this pattern is that once the walker
reaches a point in say k steps the subsequent walk will have
the distribution P(|x—x,|/\¥). However, for general \, the
step heights and widths of the ladder does not exactly follow
the behavior of the ladder for N=<1/2. Because as one in-
creases N\ there will be many paths from the origin to a par-
ticular x,. To justify the analysis for the case of A<1/2 we
also present the numerical simulation for a specific case
A=m/10 in Fig. 1.

We also would like to make a note of the fact that for
xo=1/(1-N)—¢, that is x, being close to its maximal range
with € small, we get

In e

t =—. 18
{txo)) =~ (18)
This has the same logarithmic divergence as (10) if we make
the correspondence

7 is equivalent to — (19)

I\’

We thus have at least a qualitative connection to the con-
tinuum case as one would expect.
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FIG. 2. The mean first-passage time from x, for A=0.55. The

vertical line at x=2.2 is the ultimate range 1/(1-\) of the walker
for this value of \. The error bars are very small and are omitted.

C. Case study for A=0.55

The result for A\=0.55 can be seen in Fig. 2. As we have
mentioned, the graph has a global increase pattern and also a
self-repetitive, ladderlike local structure where we also per-
ceive slight differences from the case A <1/2 (see Fig. 1) to
the left of each ladder. That is the function between x
€ [1,1+\] looks like the one between x, € [0, 1] but scaled
with N. This is because once we reach xy=1 the subsequent
walk can be seen as starting from xy=1 and with an overall
scale of A appearing in front of the distances. Consequently,
to have a feeling of the local behavior of the first passage
time, it is sufficient to study the graph for mean first passage
time for only x,€[0,1].

In Fig. 3 which is a zoom out of Fig. 2 to the region x,
€[0,1] we see interesting features and we outline their
meaning below.

(1) Straight line between x, [0.2,1]. This is a manifes-
tation of the falling out of range effect we have outlined
above. The error bar of this line vanishes and this can be due
to only one reason: there is one and only one path that can
pass from this interval [19]. This becomes easier to under-

stand if we also realize that the value 0.2 is nothing but

1.4

_ —_
to [

—_
—_

Mean First Passage Time

—_

[ . I . I . I . I . ]
O'90 0.2 04 0.6 0.8 1

X0

FIG. 3. Zoom of Fig. 2 to the region x; € [0, 1]. The straight line
has zero error. See text for explanation.
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FIG. 4. Mean first-passage time for A=1/12 for the first few
steps in the ladder.

—14+X/(1=\) for A=0.55. Thus if the walker chooses to take
the first step to the left then the ultimate position it can go is
simply the value quoted above. Any point beyond this value
can only be first passed by a single step to the right. One
could now ask: what should be the largest value for A such
that there is such a behavior? This is answered by the solu-
tion of the inequality

N 2
—l+——=<1—-N=-. (20)
1-X 3
It is instructive to note that this value of \ has been observed
in [8] to be the smallest value for which there are an infinite
number of paths from the origin to any point. This, we would
like to contrast to the fact that the requirement to have at
least one path from the origin to any point, is satisfied for
N=1/2, again mentioned in [8]. Here we see an example
where the condition is reversed. That is, there are only finite
number of paths to certain positions and some positions can
only be reached by unique paths. For A=2/3 we expect this
straight line behavior to disappear since there will be an in-
finite number of paths from the origin to any point. See Fig.
4 and then see Fig. 5 for A=1/y3 and Fig. 6 for A=0.9 both
of which have A=2/3.

1.6 ; T T T T T

—_ — #
9] ~ n

Mean First Passage Time

—_
[\

1.1 . 1 L 1 L 1 . 1 s
0 0.2 0.4 0.6 0.8 1

X
[

FIG. 5. Mean first-passage time for A=1/ V2 for the first step of
the ladder.

036118-5



T. RADOR AND S. TANERI
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FIG. 6. Mean first-passage time for A=0.9 for the first step of
the ladder.

(2) There are multiple plateaus. This is again a manifes-
tation of the condition that for A =2/3 there are infinite paths
from the origin to any point. The converse is not necessarily
true and it is apparent in Fig. 3. Certain values of x, are
reached by a finite (not one) number of paths and there are
ranges of x, such that this number is constant [20]. Conse-
quently, the appearance of plateaus is guaranteed by the con-
dition A=<2/3 and we see this to disappear in Figs. 5 and 6
(both of which represent cases for A =2/3) where the plateau
structure has transformed into a cascaded hill form.

(3) Time goes up as x, gets small? If we consider Figs. 2
and 3, we observe that as opposed to the global increase of
the ladder, the mean first-passage time has a local increase
pattern if we go to low x,. This local increase, as we have
outlined above, is due to the fact that one particular path
might contribute to the first-passage distribution of more
than one x,, and as x,— 0 the number of paths that do so
generally increase without decreasing the probability of the
first-passage distribution. On the other hand we expect as
A — 1 that this behavior will disappear since the number of
Xo’s, a particular path might contribute, would naturally de-
crease.

D. Intermediate conclusions

Here we would like to sum up what we have observed so
far. For each A\ the curve for the mean first-passage time has
the form of a ladder. The ladder has appreciable jumps at the
extremity walk points xy(K) given by (17). These jumps are
forming the backbone of the global increase as x, gets larger.
However on a particular step of the ladder, that is for
xo(K)<xy<x,(K+1), there is very rich local behavior. We
have studied some of these. On the other hand, this local
behavior is not very fierce. For example, if we consider the
first step of the ladder for different \’s as in Figs. 3, 5, and 6,
we see that the mean first-passage time is not too different
than the value to the rightmost value of the step. Therefore to
study the global increase pattern it should be enough to con-
sider only the first-passage time from extremity walk points
xo(K).

V. GLOBAL STRUCTURE FOR GENERAL A

For A=2/3 the mean first-passage time differs from (16)
for the extremity walks defined in (17) as can be checked
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FIG. 7. N\ behavior of the first-passage time for various extrem-
ity walk points. Error bars are omitted for clarity.

from Figs. 5 and 6 where the mean first-passage times are not
1 for xo(1)=1. Nevertheless, as we have mentioned, with
increasing x, the ladder structure is still present, and the
ladder jumps are still occurring at x,(K). So we have to con-
sider another approach. To study how much discrepancy
arises, we have simulated the random walk for different ex-
tremity points and computed the mean first-passage time mi-
nus the values that is given by (16), that is for each N we
computed

(1'(K)) = (t(xo(K))) - K. 21

The result is presented in Fig. 7, where we have again sup-
pressed the error bars to have a clear picture. A representa-
tive picture with the error bars is given in Fig. 8.

The discrepancy starts at A\=2/3 as anticipated. It is small
for not too large values of \ and diverges later on. However
we see that the discrepancy itself has a pattern. All the curves
agree up to a certain value of \, then the curve for K=1 starts
to deviate. After this point the remaining ones agree up to
another certain value of N\ after which the curve for K=2
starts to deviate. This goes on in the same way for higher
values of K.

To understand and quantify this behavior we would like to
remind the reader that extremity walks are in essence the

05 06 0.7 0.3 09 1

FIG. 8. Figure 7 shown with error bars for the first two extrem-
ity walk points.
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fastest paths to a given point. Then, the next to fastest path
would be one with a single step in the wrong direction. Of
course it is important when the wrong step is realized and
this will be the crucial point in our line of reasoning. Let us
try to construct our argument by an example: consider a first-
passage path from the origin to xy(2), the fastest path is of
course an extremity walk that would take two steps to the
right. Next, we would like to consider paths with one step in
the wrong direction that would still pass from x,(2). There
are two possibilities: one can either choose the wrong direc-
tion in the first step or in the second. Considering these
choices and demanding the subsequent walk would be in
range, we have two equations

-1+ =1+\— \=0.732051, (22)
\? 2

1-N+ =l+N—A=—. (23)
1-\ 3

Now (23) is the same as the condition to reach x,(1) with
one step in the wrong direction, so it is not a new condition.
However (22) is new and once N gets bigger than the value
quoted, this walk [which was already contributing to x,(1)]
will start to contribute to the first-passage time for x(2).
Thus between these two values of \, {t'(K)) will be the same
for K=1 and K=2, and consequently for all K. However as
soon as A\ gets bigger than 0.732 051 a new path will start to
contribute to the first-passage time for x,(2), meaning that its
difference from the base value 2 will be bigger. This is why
the curves for K=1 and the rest start to branch at this point.

To iterate and make the idea clearer let us now consider
the same argument for x,(3). There are three possible ways
one can opt for the wrong direction and demanding the walks
will be in range we get the following:

A
-1+ =1+N+\2, (24)
-\
2
=N+ =1+N+A2, (25)
DY
3
T+N=N2+ =1+N+\2, (26)

which would yield, respectively

A =0.770917, (27)
A =0.732051, (28)
A=73. (29)

We have indeed numerically observed the fact that the curves
for K=2 and K=3 agree up to around A =0.770917. Since
as A\ gets bigger than this value a path that was already con-
tributing to x,(1) and x,(2) would be added to the path list of
Xo(3) and hence creating a shift in the curve.

It is also possible to argue about the existence of paths
with two or more steps in the wrong direction which will in
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TABLE 1. Possible roots of Eq. (30) for the first few values of
(K, P) are presented.

P\K 1 2 3
0.666667 0.732051 0.770917
0.780776 0.816497 0.839287

3 0.835122 0.858094 0.87358

general give an infinite number of possible constraint equa-
tions and possibly interfering with the picture above. Let us
consider the case with two steps in the wrong direction.
There are three generally possible cases. First, one could
choose the wrong steps early in the walk and not so sepa-
rated in time thus subjecting the subsequent walk to greater
punishment. Second, one could choose them after having
subsequent steps to the right, again not so separated in time,
meaning a much less punishment for the subsequent walk.
Or third, one could have them separated by a long walk to
the right for which the punishment would be somewhere in
between compared to the other two cases. It is clear that only
the first case comes with more probability because less num-
ber of steps are fixed [21]. So we would like to introduce the
idea of worst case punishment extremity walk defined as the
path in which all the wrong steps are taken at the beginning
of the walk. This is a generalization of the idea we outlined
above. The general constraint equation for the P-step worst
case punishment extremity walk (that is P steps to the left at
the very beginning) to go to xo(K) extremity point is given
by

AN+ anP-2=0. (30)

The possible roots of this equation for the first few values of
(K, P) are presented in Table I.

From Table I the fourth highest value is given for
(K=1,P=2) and not (3,1). This means that just before the
path (3,1) contributes to x,(3) the path (1,2) starts to con-
tribute to xo(1) and this condition would also satisfy a differ-
ent walk of the form 1-N=N2+N\3/(1-N\)=x,(2)=1+A\.
So the process of branching we have mentioned above
is actually more complex. However the behavior from
A=0.666 66 to A=0.732051 is free of these complexities.
Thus one can safely state that we have the following:

(I'(K))=f(\) for 3 <\<0.732051, (31)

a function independent of K.
As a final remark we would like to mention that all the
curves in Fig. 7 fit very well to the following ansatz:

ao(K) az(K)
\r o +a,(K)+ _ln N (32)

with ag, a;, and a, are fit parameters. Here the first two
terms, which dominates the small N\ behavior, represent an
analogy the small u behavior of (9), whereas the last one,
which dominate the large A behavior, is the analog of large u
asymptotic behavior in (10), if we would like to make the
qualitative identification 7~—1/In N. Since, with this identi-

036118-7



T. RADOR AND S. TANERI

fication and for fixed x,(K), increasing (decreasing) A would
be similar to increasing (decreasing) u. So the discrete case is
not qualitatively very different than the continuum model we
have presented.

VI. CONCLUSION

In this work we have studied the first-passage character-
istics of a random walker with step sizes decaying exponen-
tially in discrete time. We have also shown that the discrete
case shares all the qualitative properties of a continuum dif-
fusion equation with an exponentially decaying diffusion
constant which hints phenomenologically that the continuum
case might be of choice for studying general aspects of such
physical systems. While the discrete case shares global quali-
tative properties of the continuum model it locally shows
very rich mathematical structure, the most important of these
is that the mean first-passage time undergo transitions at \’s
defined by the equation NX+2\"~2=0 with {K,N} e N. In
order not to repeat ourselves we refer the reader to the end on
the Introduction for a short review of these local properties.

PHYSICAL REVIEW E 73, 036118 (2006)

Although, mainly to connect to the literature, we have
confined ourselves to the exponentially decaying step sizes,
there are many other possibilities. One possible interesting
example that comes to mind is to assume sy=(1-N/M)*
with M integer and « arbitrary. This case has the nice extra
feature that the walk really comes to a stop when the walker
commits M steps therefore allowing an exact enumeration
of paths for small values of M. Furthermore this example
has a connection to the exponential case remembering
e*=lim,_,..(1+x/a)’. A preliminary analysis we have carried
out gives similar behavior to the exponential case while dif-
fering in details. Another likely extension is, as proposed in
[7], the n-dimensional random walker with shrinking steps
which might provide further interesting features.
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